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Lymphocytic choriomeningitis virus (LCMV) can cause acute fatal disease on all continents but was never detected in Africa. We report
the first detection of LCMV RNA in a common European house mouse (Mus musculus domesticus) in Africa. Phylogenetic analyses
show a close relationship with North American strains. These findings suggest that there is a risk of the appearance of LCMV
acute encephalitis cases. This is a perfect example of virus dissemination by its natural host that may have dramatic public health
consequences.

The lymphocytic choriomeningitis virus (LCMV) is a member
of the Arenaviridae family found on the American, Asian, and

European continents. It is the only member of this family causing
disease in humans in Europe. While other viruses of the same
family cause human severe hemorrhagic fever in Africa (Lassa
virus) and South America (Junin virus, Machupo virus. . .), clin-
ical manifestations of human LCMV infection can range from
mild febrile illness to severe meningitis, encephalitis, and dissem-
inated disease (1, 2). Human infection occurs through direct con-
tact with infected rodents or by inhalation of infectious rodent
excreta or secreta. LCMV belongs to the Old-World arenavirus
serocomplex within the Arenaviridae family. Its genome contains
two negative-sense single-stranded RNA segments: the small (S)
and large (L) segments. The S segment encodes the nucleocapsid
protein (NP) and the glycoprotein precursor (GPC). The L seg-
ment encodes the viral RNA-dependent RNA polymerase (L) and
the small zinc finger-like protein (Z). The main natural reservoir
of LCMV is the common house mouse, Mus musculus, but other
rodent species can be alternative reservoirs (3, 4). LCMV has been
shown to circulate among both its natural host and humans on the
European, Asian, and American continents. In Africa, only anti-
bodies against the virus have been found in rodents (5). Here we
report the first detection of the LCMV genome in its natural host,
the house mouse, M. musculus domesticus, in Africa.

From March 2012 to July 2014, we trapped a total of 797 ro-
dents around and inside human dwellings in four Gabonese
towns: Libreville, Makokou, Franceville, and Léconi (Fig. 1). One
hundred eighty-eight (25%) of the mice captured belonged to M.
musculus, a species native to Asia. This high incidence of the pres-
ence of this non-African rodent species indicates that this species
tends to progressively replace, or at least push away from housing,
the local species.

In a real-time quantitative reverse transcription-PCR assay tar-
geting the GPC gene (the detailed protocol is available on request),
26 animals (17 from Libreville and 9 from Makokou) tested pos-
itive. All of them belonged to M. musculus, yielding an LCMV
prevalence of about 13% in this species. One should stress that no
specimen from local species tested positive. The introduction of
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FIG 1 Localizations of capture sites in Gabon. Four cities have been chosen be-
cause they present different ecosystems, a forest ecosystem (Makokou), a savanna
ecosystem (Léconi), both forest and savanna ecosystems (Franceville), and an
urban environment (Libreville). The plain map of Africa is from Cartes & Cliparts,
and the map of Gabon is from Imago Mundi Encyclopédie gratuite en ligne.
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FIG 2 Phylogenetic relationships among Gabonese M. musculus and other Mus species based on a partial sequence (949 bp) of the cytochrome b gene. Bootstrap
values of �80% are indicated. The GenBank accession number is indicated at the beginning of each sequence represented in the tree, and the sample’s country
of origin is also indicated. NA, not available. The scale bar indicates the number of nucleotide substitutions per site.

TABLE 1 Comparison of the S segment of LCMV strain Makokou with those of other LCMV strains present in GenBank

Straina

Size (nt) of:

Full length 5= UTR GP IGR NP 3= UTR

Makokou, Gabon, 2012 3,374 76 1,497 64 1,677 60
Pasteur, France, 2006 3,376 77 1,497 64 1,677 61
Douglas, New York, USA, 1947 3,375 77 1,497 64 1,677 60
Traub, USA, 1936 3,358 59 1,497 64 1,677 61
WE (ngs), Nagasaki, Japan, 2011 3,375 77 1,497 64 1,677 60
WE (UBS 57135), New York, USA, 1935 3,376 77 1,497 64 1,677 60
a The name, country of origin, and year of isolation each strain are indicated.
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FIG 3 Phylogenetic comparison of the LCMV Makokou strain with other LCMV strains. Lunk virus was used as the outgroup. Analyses of the complete
nucleotide sequences of the full-length NP (A) and GP (B) genes and partial sequences of the L (C, 6,599 nt) and Z (D, 191 nt) genes were performed. The name,
year, and country of origin of each strain are indicated. At the nodes are bootstrap values based on 1,000 replications. The scale bar indicates the number of
nucleotide substitutions per site.
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M. musculus on the African continent is thus associated with the
introduction of LCMV, for which it is a natural reservoir.

Because three M. musculus subspecies can carry LCMV (6–8),
we needed to determine the subspecies harboring the virus in
Gabon. Genomic characterization of two LCMV-positive mice
from Libreville and Makokou and 30 LCMV-negative mice from
Franceville (the detailed protocol is available on request) was done
by using a partial sequence of the mitochondrial cytochrome b
gene (9). A phylogenetic tree revealed that all of the mice belonged
to the subspecies M. musculus domesticus (Fig. 2).

Genomic characterization of full-length S segment (GenBank
accession number KM523323) and partial L (6,599 nucleotides
[nt]; GenBank accession number KM882857) and Z (191 nt) se-
quences from the liver and spleen of one animal from Makokou
was done (the detailed protocol is available on request). The S
segment of this new strain, named LCMV Makokou, is 3,374 nt
long. The comparison of this genomic sequence with those of
other LCMV strains for which the S genome is available revealed
that the lengths of their intergenic noncoding regions (IGRs) and
coding regions are highly consistent while the lengths of the 5= and
3= untranslated regions (UTRs) differed among all of the strains
(Table 1). The NP and GP gene sequences diverge from those of
other known LCMV strains, respectively, by 4 to 10% and 3 to
20% at the amino acid level and by 15 to 28% and 16 to 37% at the
nucleotide level (see Table S1 in the supplemental material).

The complete NP and GP sequences and the partial L (6,599 nt)
and Z (191 nt) sequences have been aligned with other LCMV
sequences by using the ClustalW algorithm with the MEGA4 soft-
ware package (10). Phylogenetic analyses with NP and GP genes
place the Makokou strain in groups in which the majority of the
strains derive from humans and have caused severe clinical infec-
tions in the United States (multiorgan dysfunction after trans-
plantation, congenital infection, meningitis, or encephalitis) (11)
(Fig. 3). In the same way, Z gene analysis places the Makokou
strain with a strain derived from the pathogenic American WE
strain, while the analysis with the L gene places this strain with
strain HP-65/2009-1 from M. musculus from France.

To get more information about virus strains that could circu-
late in Gabon, we sequenced partial NP (445 nt) and L (480 nt)
genes from 18 samples from the two trapping sites (15 from
Libreville and 3 from Makokou). Phylogenetic analysis placed all
of the Gabonese strains in the same cluster (data not shown),
indicating that only one viral strain was introduced from America
into Gabon together with its natural host.

This study showed for the first time the presence of LCMV in
an African country within its natural host, M. musculus domesti-
cus. The virus was introduced into Gabon together with M. mus-
culus domesticus and tends to spread across Gabon as domestic
mice advance and colonize new areas. Transmission of LCMV to
local rodent species must now be monitored, as it may cause dra-
matic health damage in these local species.

LCMV strains exhibit high genetic diversity and have been di-
vided into four different lineages (11). Half of the strains, included
in the same cluster as the Makokou strain (Fig. 3A and B), belong
to the first lineage associated with severe human disease, and these
strains have been directly associated with M. musculus mice (11).
Several cases of direct LCMV transmission from rodents to hu-
mans, resulting in severe disease, have been documented in
France, Spain, and the United States (12–15). Together with the
high LCMV prevalence among house mice (13%), these findings

point to the possible emergence of LCMV in humans in Gabon.
Indeed, similar conditions have been found in the United States,
where up to 5% of the population is infected, possibly owing to the
large population of infected house mice (16). So, in addition to the
search for toxoplasmosis, malaria, HIV, and herpesviruses, there
is now an urgent need to systematically perform LCMV diagnosis
in cases of unexplained meningitis and encephalitis. Health facil-
ities must therefore be prepared to deal with a case of LCMV in the
near future.
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